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Abstract. From the early days of quantum field theory it has been known that observables 
from quantum mechanics can be extended to observables in quantum fields: the so-called 
process of second quantization. The explicit form of the normal ordered expansion series 
for a second quantized observable is a quadratic'form of the creation and annihilation 
operators. If we consider a quon-algebra described by the q-commutation relation 
a(x )a+e) -qa+(y )a (x )=(?y ) I ,  -l=Sq=Sl, thenormalorderedexpansionseriesbecomes 
quite complicated. For infinite statistics, i.e. for q =0, the expansion series is known. In 
the present paper we find the normal ordered expansion series for secondquautized, 
arbitrary observables. 

1. Introduction 

In recent literature several kinds of deformed canonical commutation relations are 
considered. They are often useful in the representation theory of quantum groups 
(Pusz and Woronowicz [l], [2], Biedenham [3] and Macfarlane [4]).The deformations 
connected with the concept of quon-algebra seem to be quite useful (Greenberg [5] 
and Mohapatra [6]) and it is this type of deformations we are going to consider in 
the present paper. It is worth mentioning that quon-algebras are closely connected 
with the theory of q-series, e.g. the Gauss polynomials are identical with the q-binomial 
coefficients [7]. Quon-algebras are also related to non-canonical commutation relations 
in the Erst-order approximation, as proposed by Heisenberg [SI. Our paper, which is 
primarily inspired by Greenberg [5], is not concerned with the general theory of 
quon-algebras 191, but only with producing the normal ordered expansion series for 
the second quantization of observables, in particular the number operator. The treat- 
ment given in this paper is more general than the one used in [141 and [151. 

~ ~ 

2. Definitions and known results 

The annihilation and creation operators acting on the (not completed) Fock space 
r0Z' should obey the q-commutation relations 

[&), a'b)l, = ( * Y ) l  (1) 

where [A, E ] ,  = A B  - qBA. The parameter q ranges from -1 to 1. The arguments x, y 
in the annihilation and creation operators are elements of the one-particle, real or 
complex, Hilbert space X. We write 4  for^ the vacuum and assume as usual that 
a(x)@=O. Given xlr x,, . . . , x. E X, we briefly write 

XlXz.. . X. = U+(Xl)Q+(Xz). . . U+(&)$. 
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4644 J S M0ller 

In what follows E n  denotes the permution group of n elements and S,,,, c En+m 
denotes the subset of n, m - n shuffles 

Sn.m = { U E ~ , + ,  I u(1) <. . . < u(n) and u(n+l) <. . . < u ( n  + m)}. 
For UEZ, we let #U denote the least number of transpositions of neighbouring 
elements needed to generate U. 

The operator a ( x )  satisfies the q-Leibniz rule of derivation 
" 

a ( x ) ( x 1 . .  . xJ= q - I ( x , x i ) . x , .  . . i ? j . .  . x.. (2)  

( X I . .  . % , Y E . .  . ym), = %m.det q((xi, Y,)) 

i-1 

The inner product between elements of the form xl,. . . , x. is 

(3) 
where for an n x n-matrix A we write 

n 
det ,(A) = qi-'aIi.det ,(Ali) det ,(a) = a. 

i-1 

This q-determinant can also be written as 

The inner product is positive definite [5,10,11]. The positive definiteness assures that 
for an orthonormal basis {e.}, elements ofthe form qe(t) . . . el*(") are linearlyindependent 
for u ~ E ~ / I ( j ~ , . . : , j ~ ) ,  where I(jl ,..., j.) is the group of permutations that sends 
jl, . . . , j .  into itself. There are exceptions for q = *l, i.e. for the Fermi and the Bose 
algebras. In these algebras we additionally have the q-commutation relation 
[~'(x), a'(y) 1, = 0 which is not valid for other qs. This means that the q =*I algebras 
are considerably smaller than quon-algebras for -1 < q < 1. 

In addition to the Leibniz rule (2) ,  we use a result of [9] which provides a more 
general derivation formula. Namely, for m n we have 

a ( % ) .  . . a ( X i ) ( Y i . .  - Y m )  

= z qU'(xl .. . X " , Y , ( l ) .  . . Y ~ ( " ) ) . Y l ( n + 1 ) . . . Y ~ ( m ) .  (5) 
.ES.,,-, 

This formula is essential for the proof of the main theorems of this paper. 

3. Abstract second quantizatloo 

It is well known that a bounded operator U on the one-particle space extends to a 
homomorphism TU on the Fock-space (cf [12] for a proof which can easily be 
generalized to arbitrary q) .  This we use to construct'the second quantization of an 
observable A. We extend the unitary semigroup eirA generated by A to a unitary 
semigroup eirA on the Fock-space. The generator of re'" constitutes the second 
quantization, drA, of A. We have 

d dTA(f. g) = -i. ;i; [r e'"(f. g)][,,o 

=(dTAf) .g+f .  (dTAg) 
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which means that d rA  is a derivation. Furthermore, since r eirA extends e'", we have 
that forxe%cro% 

dI'A(x) =Ax (7) 

Notice that these two properties uniquely determine dTA. 

4. Normal ordered expansion series 

In the case of Bose and Fermi algebras the explicit normal ordered expansion series 
of dTA is a quadratic form of annihilation and creation operators, i.e. for q =*I 

m 
dTA= 1 a+(Ae,,)a(e.) 

"=I  

where 
of basis. 

is an orthonormal basis of 2. This definition is independent of the choice 

For q = O  the number operator, N [SI, is given by 
, ,  

( 9 )  
m 

N = W I =  2 ek ,... e&a(eka) ... a(ek,) .  
n = l  G I . . . . , ~ ~  

From now on we will require that -1 < q < 1. Before giving the form of the normal 
ordered expansion series of dI'A for an arbitrary linear operator A, we consider the 
case of A = I, where I denotes the identity. 

Theorem 1. Let ro% be a quon-algebra generated by a one-particle Hilbert space %. 
The number operator N, i.e. the operator which has all products of the form x, . . . x,, 
xi E 2, an eigenvectors corresponding to the eigenvalue n, has the normal ordered 
expansion series 

where the coefficients are given by the recursive ( m ! x  m!) matrix equation 

with 

n, =min{l s l c ~  m - 1 Is(k+ 1) <. . .< s (m) ]  

.~ and 

a:* = 1. 
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Proox First we compute N(xl  . . . xm), where x, E 7t 

N(xl . . . xm) 

These computations use (3), (4) and (5). To find the coefficient of 
s E Zm,  we proceed as follows. Define 

. . xS(,,,), where 

n, = min{l =z ks m - 1 I s(k+ 1) <. . . < s (m)} .  

For a term inthe summation over S%,,-" in (11) to contribute to a coefficient correspond- 
ing to a permutation s, the shuffle must satisfy the condition 

~ ( n + l ) =  s (n+ l ) ,  . . . , ~ ( m )  = s ( m )  and KES,,-,. 

Therefore the summation over Sn.,,,-" contributes with only one term. The K ES.,,-. 
that gives the contribution is uniquely determined by s, and hence we will denote it 
by K,. 

We can now write the coefficient of x,(~). . . &(,) as 

which yields the recursive ( m ! x  m ! )  matrix equation as stated above. 

number operator to a single element x and requiring the eigenvalue to be 1. 

unitarily equivalent to the matrix 

We verify that aid = 1 by applying the normal ordered expansion series for the 

The uniqueness of a; follows by noticing that the matrix to be inverted is actually 

( ( e m ) .  . . eq(m), , . e,,,))) 
where both (r and s run through Z,, and e,, . . . , e, are elements from an orthonormal 
basis of X. Since the inner product (3) is strictly positive definite [ 141, the determinant 
of this latter matrix is different from zero (or consult [SI for an explicit expression for 
this determinant). 

It is, however, inconvenient to carry out calculations with a recursive matrix 
equation. The next proposition removes the recursive structure and gives an explicit 
matrix equation for a:. We start with a few notational comments and a combinatorial 
result. 
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Theorem 2. Let U E  7,". The permutation U can be decomposed into a composition of 
n, m shufaes K ] ,  . . . , KL such that K!  E S., ,",.,_ n, c Znr-, and no= n, where &, are 
embedded canonically into L.. This decomposition is unique if k, is minimized. For 
all such decompositions the following homomorphism holds 

# U =  # K b + .  . . + # K ] .  0 

From now on k, denotes the smallest number of shuffles K , ,  . . . , K ~ ,  ki E S,, ,,",-,-",, 
needed to decompose o. Notice that in this context the number n, used in the formula 
for the coefficients is equal to n,  , 

Now we are ready to state the non-recursive matrix equations for the a:. 

Theorem 3. The following matrix equations determine the coefficients in the normal 
ordered series for N = dT1 

where the vectors and the matrix are indexed by permutations from E.. 

Proof: The proof consists of a series of technical lemmas, where we compute the 
right-hand side of the recursive matrix equation. 

The idea is to evaluate the factors R,,,, by recursion using a decomposition into 
shuf8es. First we calculate R,,, where K is a shuffle. 

Lemma 1. For n > 1 we have the identity 

c rU:q*==1 
C E E .  

Roo$ We have 

= n - Rn.ld. 

Since nid = 1, we conclude by using downward induction that the lemma holds, 

Corolla6 1. For id EX, we have 

0 

RRid = n - 1. 0 
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Definition. Let z: N+Z be defined by the series 

z ( a ) =  1 ( - 1 ) j + I ,  
h , .  .... h,=l 

Zkr=n  

Lemma 2. Let K E Snx,m-nK\{id}c 2,. We have 

R,,# =z (m-n , ) .q*" .  

Proof: Recalling the definition (IO) of R,,,,,, we see that given n, m - 1 
can decompose K uniquely into two shufRes K .  and 7. such that 

n > n., we 

Kn E 7. E snx.n-ns\{id} 

and 

# K  = # K .  + # 7.. 

For n = n,, T. is the identity, and thus the inner sum yields q*'" = q8x. We can now 
repeat this process on the other summation terms by utilizing the 'recursive matrix 
equation until the sum contains only the term indexed by n,. This procedure is repeated 
as many times as the number of partitions of m-n..  The factor (-1)j" comes 
from using the matrix equation a number of times equalling the partition number 
minus one. 0 

Lemma 3. Let s~X, \ { id }  such that U = K O T ,  where KE&,. , -~,  and ~ ~ & \ { i d } c X ~  
canonically. We have 

R,,~=-z(m-n,) .q'".R, . , .  

Proof: We use exactly the same procedure as in the proof of the last lemma until we 
reach the stage with one term in the sum. At this stage we do not end up with a sum 
that yields one. We now use the recursive matrix equation once more which gives the 
sign of R,,*. 0 

Corollary 2. Let s E Em and K ,  , . . . , K~~ be the unique decomposition of s into shuffles. 
We have 

R, ,=( - i )ks+l . (  i-1 ;i z(nj-l-nj) ) . q * s .  0 

Lemma 4. We have the simple result 

d a )  = &.I. 

Proof: The sum in the defining series goes through all partitions of a. By simple 
combinatorics we find that there are 

(43 
partitions with partition number j .  This fact combined with a suitable combinatorial 
identity yields the result. 0 
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CoroZZary 3. For s"E z,\{ id} we have 

By  this^ we have obtained the non-recursive matrix equation. 
For q = 0 the equation for a: is easily solved and the result is 

~~ 

s , i d  

in agreement with (9). 

operator A on %' we have 
For q equal to zero the generalization f r o m ~ m I  to dTA is easy. For a self-adjoint 

It is easily verified that this is the desired normal ordered expansion series for dTA 
in the case q = 0. 

Calculations analogous to the ones used above show that for general q we have 

dTA(x, . . . x.) 
n 

= x, . . . A x , . . .  X"+ z ( -1 )k -q-  
i=1 ucX.\id 

x ( X d l ) .  . . A%,). . . x u ( " ) - ~ m ( l )  . ..Ax&+,). . . X&J. 

However, for q # 0 this is not a derivation and hence not of interest. We will consider 
a more general normal ordered expansion series. The computations are to a large 
extend the same as for the number operator so that we can utilize practically all the 
previous results. 

Theorem 4. The normal ordered expansion series for the second quantization dTA, of 
A: X+ X, a self-adjoint/anti-self-adjoint operator is 

f o r j G %  and for j > n  we define LY:,~=O. 

Proox First we calculate a recursive matrix equation similar to the one for the number 
operator. To utilize the calculations carried out for N we must exchange the outer 
sums in the series for d r R  Compared to the case of the number operator, there are 
m-times as many coefficients to find, namely coefficients to the terms 

XdI) . . . Axdj) . . . Xl(m). 
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This gives m - 1 recursive equations and one non-recursive equation, namely 

where 
"l-I 

rmj= a",..*- ] < m  

RLj = 0 j a m  
n=mai(n,.jl OEZ. 

and 
=Id - 

1.1 - 1. 
Now the procedure will be similar to the one used for the number operator. We 

being with the following: 

Lemma 5. For n 1 we have 

and for s E X n  we have 

Prooj The second part follows directly from the recursive matrix equations (which in 
this case are actually not recursive). To prove (i) we calculate 

which by induction is equal to 

Corollary 4. For id E Xn we have 
R:.j=1-6,j .  

Lemma 6. Let K E Skm+\{id}. Then 
Rk,j= 6 ~ j . S j . m - l ~  q . 

Prooj First consider the case j=% n. = k We have 

*I 

0 

0 

m-1 

n = k  .-ex,! 
RI,, j= 1 cxz,j.q*m. 

As in the proof of the analogous lemma concerning the number operator, we have 
RL.j = z ( m  - k) . q * K .  1 04. qeu 

V E I L  

which yields the result for j S k For j 5 k we go through a similar procedure but then 
we end up with a sum as in part (ii) of lemma 5, which concludes the proof. 0 

, 
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Lemma 7. Write s ~ Z , \ { i d }  in the form S = K O T ,  where K E S ~ + , - " ,  and 7~Z.\{id}.  
Then forj<m we have the identity 

R" m., .=-6 ","I .q*K.R:nj.  

Pro05 The proof is the 'same as in the case of the number operator. 

Now the theorem is a direct consequence of lemma I. 
For q = 0 the equations are easily solved and they yield 

a".=S . . a  
".I w,td 4, 

in agreement with (12). 

5. Coucludiug remarks 

Due to the obvious correlation between the coefficients of N and dTA we get the 
following: 

Corollary 5. Let a: be the coefficients in the normal ordered expansion for N, and 
let a"R, be the coefficients in the normal ordered expansion for dTA. We have 

To understand the limit behaviour of the coefficients of dTA and N when 141 tends 
to 1, consider an element e of an orthonormal basis {e.}..M in 2. We compute 

m mq ! 
= c d: . em 

( m - n ) 4 !  

where 

This gives a recursive formula for 4,. 
m m-1 

Notice that we have as well 
m 

d;= c z 4 . j  
i=1 OEZ,,, 

so that d: also reflects the behaviour of aLj. Since d : = ( l - q ) / ( l + q ) ,  Sn:= 1 and 
n4 ! +. n ! for q+. 1, easy induction shows that if m > 1, we have d: +. 0 for q +. 1. This 
result is quite natural since the number operator converges strongly to the Bose number 
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operator as q tends to 1, andin the Bosecase the terms a(e+)). . . a(eu(,)) are identical. 
Following this line of reasoning, we define 

.7cm 
d,= 1 (-l)"".aL 

expecting that & + 0 for q -f -1, m > 1. This holds at least for m = 2. 
We conclude by presenting a few explicitly computed coefficients 

2 
- aid - 4 (2.1) - -4 

I - q 2  1 - q 2  
%,I -- 2.1 -- 1.1 - 1 
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